Put simply, 3D printers are computer-controlled fabrication devices. A wide variety of objects designed and defined within software can be created in three dimensions within the printing device from different plastics and polymers - the possibilities depend on the size and model of printer used.
The objects are formed via the rapid addition of multiple layers of material, each covering the previous layer. The printing material is applied via a nozzle called an ‘extruder’. It is supplied as lengths of filament which become soft and moldable when heat is applied and then solid again once they have cooled. This construction process accounts for another term used to describe 3D printing in an industrial context - additive manufacturing.
3D printers allow the rapid and flexible production of prototypes, models, spare parts and many other items across the industrial, commercial and even domestic spheres. Models available range from high capacity designs intended for the factory floor right through to small and affordable 3D printers for home use.
Designs intended for printing are normally created in 3D printing software as CAD (Computer-Aided Design) or AMI (Amazon Machine Image) files. These precisely define the dimensions of the object to be built and many designers make their creations available for download and reuse.
Before printing can take place, the CAD or AMI file describing the 3D object must be converted into the programming language G-code, which will be directly readable by the device. The conversion is undertaken by 'slicer' software.