A bipolar transistor - properly known as a bipolar junction transistor or BJT - is a versatile discrete semiconductor device. Discrete semiconductors vary from diodes and rectifiers to BJTs, and this particular device is designed primarily to perform one function as a single semiconductor, as opposed to having to build multiple semiconductor components into an integrated circuit on a printed circuit board (PCB).
Bipolar junction transistors are solid-state, three-pin (base, collector and emitter) components, constructed from three layers of silicon. There are two main types, namely PNP (positive-negative-positive) and NPN (negative-positive-negative). As with all transistors, the basic function of a BJT is typically to function as a switch or to amplify, filter, and rectify power.
Bipolar transistors are current-controlled and operated devices, meaning that a much smaller base current causes a larger current to flow from emitter to collector. Whereas transformers can amplify either current or voltage, transistors can amplify both. In its most common emitter configuration, a BJT will naturally amplify current, but when integrated into a circuit, it can easily be made to amplify output voltage. Therefore, bipolar transistors are frequently used as a method of signal amplification across a broad spectrum of circuits, systems and product types.
BJTs were among the first functional transistor devices ever created. The earliest bipolar transistors were the results of enterprising work done by renowned postwar physicists and engineers Bardeen, Brattain and Shockley. Initially emerging from Bell Laboratories in the late-1940s, BJTs quickly became a universal standard in the decades that followed. Fittingly, their inventing trio was ultimately awarded the 1956 Nobel Prize for their efforts in bringing bipolar junction transistors to mass production.
Bipolar junction transistors can increase both analogue and digital signals, as well as having the ability to switch DC power supply or to function as an oscillator. While BJTs are designed primarily to amplify (analogue) current, they can also function as an electronic (digital) switch in circuitry.